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When the buoyancy forces are small compared with the inertia forces, heated 
plumes in laminar flows which are uniform at upstream infinity approximately 
satisfy a linearized version of the Boussinesq equations, here called the Oseen- 
Boussinesq equations. An analytic solution is constructed for arbitrary Prandtl 
number and arbitrary direction of the unperturbed flow in the case of a plume 
produced by a point source. The two-dimensional case of the plume from a line 
source is considered briefly. A Stokes-type paradox occurs: it is found that a line- 
source solution that vanishes at  infinity does not exist. 

1. Introduction 
In  this paper an asymptotic approximation is derived for slightly buoyant 

plumes in a laminar flow which is uniform at upstream infinity. The inclination 
to the direction of gravity of the oncoming flow is arbitrary, as is the Prandtl num- 
ber. By slightly buoyant plumes we mean plumes in which the buoyancy forces 
are an order of magnitude smaller than the inertia forces. For such plumes 
the Boussinesq equations can be approximated by a linear set of equations, 
which we shall refer to as the Oseen-Boussinesq equations. It will be shown that 
these equations give rise to a Stokes-type paradox. That is to say, for a two- 
dimensional plume from a line source in an infinite region, a sohtion that vanishes 
at  infinity does not exist, whereas for a three-dimensional plume from a point 
source such a solution does exist; this solution will be constructed explicitly. 

2. The Oseen limit of the Boussinesq equations 

not vary too much, are the Boussinesq equations: 
The equations governing-steady buoyant laminar plumes, if the density does 

(2.1) 

The y axis makes an angle a in the anticlockwise direction with the vertical, 
e, and e2/ are unit vectors in the x and y directions, /3 is the thermal expansion 
coefficient, g the acceleration due to gravity, 0 the difference between the 
temperatures inside and outside the plume, p the density, p the pressure, u the 
velocity and v and K the kinematic viscosity and diffusivity, respectively. At 

1 (u.V)u = -p-1Vp+vV2u+/3gO(e,sina+e,cosa), 

(u.V)S = KVW, divu = 0. 
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upstream infinity the flow is assumed to be uniform and in the x direction. 
Either a point or a line source of heat is assumed to be present a t  the origin. The 
source of the plume is assumed to produce no mass or momentum. The flow takes 
place in an unbounded region. 

L, U ,  p and 0 = Q(PULYC,)-~ are chosen as the units of length, velocity, 
density and temperature, where U is the velocity of the flow at upstream infinity, 
Q the rate of heat production from a unit length of the line source in the two- 
dimensional case and from the point source in the three-dimensional case, cp the 
specific heat a t  constant pressure and y equals 1 or 2 in two or three dimensions, 
respectively. The length unit L is left unspecified and can be chosen arbitrarily. 

If dimensionless quantities are denoted by the same symbols as the cor- 
responding dimensional quantities, (2.1) become in dimensionless form 

( 2 . 2 )  I (u. V) u = - Vp + (2h)-1V2u + sO(e,sin a + e, C O S ~ ) ,  

(u .  V) 0 = (2ha)-1 V20, 

Here h = UL/(2v)  is half the Reynolds number, 6 = g/?Q(pU3L~-1c,)-1 and 
g = V / K  is the Prandtl number. 

The dimensionless number €1. is a measure of the ratio of the magnitudes of 
the buoyancy and the inertia forces, and equals Ra ( 4 c ~ h ~ ) - ~ ,  where 

Ra = g/lQL3-7 ( v K ~ U C , ) - ~  
is the Rayleigh or Grashof number. Furthermore, E equals the square of what is 
known as the buoyancy frequency in the theory of wavesin stratified fluids, made 
non-dimensional with the time unit LIU.  

divu = 0. 

The boundary conditions are 

u = 1, v = t o  = p  = O = 0 a t  ‘infinity’, (2.3) 

where ‘infinity ’ excludes a parabolic region downstream of the source. 
For e = 0 the solution for the flow field is 

u = l ,  v = w = p = o .  (2.4) 
For e small, the solution may be expected to deviate little from (2.4), so the 
Oseen linearization may be applied. The following asymptotic series are intro- 
duced : 6 = O,+sO,+ ... , u = e,+eu,+ ..., 

p = epp,+e2p2+.. . . 
(2.6) 

The parameter s can be made small in various ways; for example by choosing the 
rate of heat production of the source to be small. In three dimensions the arbitrary 
length scale L enters 6 ,  and s < 1 if L gaQ(pU3c,)-l; hence the following 
analysis is valid a t  distances much greater than O[gc~Q(pU~c , ) -~]  from the source 
in the three-dimensional case. 

t There does not seem to be a commonly accepted name for 8. Ostrach (1964) called 8 
a Froude number because, like the original Froude number U2/gL, it is a measure of the 
ratio of the body and inertia forces. However, because body forces may arise from a variety 
of causes, as for instance in the case of the Rossby and Rlfven numbers, it may lead to 
confusion always to call this ratio a Froude number. It has been suggested (Miles 1969) 
that E should be named after John Scott Russell, who made observations on surface waves 
in the 19th century. Miles noted that this would make the principal parameters of geo- 
physical fluid mechanics a ‘vowel-ordered set’ : Ra, Re, Ri, Ro, Rzr. 
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Substitution of (2.5) into (2.2) leads to the following system of equations for 

au,/ax = - Vp, + (%-I V2u, + 8,(e, sin a i- e, cos a) ,  (2.7) 

divu, = 0. (2.8) 

With 8, = 0, (2.7) is the Oseen equation. We shall refer to the system (2.6)-(2.8) 
as the Oseen-Boussinesq equations. 

3. The three-dimensional point-source solution of the Oseen- 
Boussinesq equations 

Equation (2.6) is equivalent to the Helmholtz equation, as may be seen by 
making the substitution 0, = $(x, y ,  z )  exp ( A m ) .  Its  point-source solution is 

8, = (Av/2xr) exp (Av(x - r ) } ,  (3 .1)  
where r2 = x2 + y2 + z2. 

The Green’s function for the Oseen equation is well known. The solution of 
(2.7) is a convolution integral of this Green’s function with 8,. However, because 
of its complexity, this representation of the solution is rather unwieldy. The 
solution is obtained directly in a simple form by a method which is an adaptation 
of Lamb’s (1911, 1932) elegant method for solving the Oseen equation for the 
flow around a circular cylinder or a sphere. 

Taking the curl of (2.7) one obtains 

ayl/ax = (2h)-1v2yl + ve, x eg, (3.2) 

where y1 = curl u1 and eg is a unit vector in the vertical direction. Equation (3.2) 
is satisfied by y, = VX, x e,, with the scalar 2, satisfying 

ax,/ax = ( 2 ~ ) - 1 v 2 ~ ,  + 8,. (3.3) 

By postulating a solution of the form x1 = f(x - r ) ,  the appropriate solution of 
(3.3) is found to be 

Taking the divergence of (2.7) and using (2.8) one obtains 

V2p - -sin 80, a +- cos a. 
l -  ax ay (3.5) 

The solution of this equation is very much simplified by  the fact that a particular 
solution plP can be found from the following simple equation: 
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Equation (3.6) holds because, if plP satisfies (3.6) and (2.3)) p, ,  like O,, is a 
solution of (2.6), so that solutions of (3.6) satisfy (3.5). With the help of (3.6), the 
solution of (3.5) is easily found to be 

cos a a sin a 
Pl = 7 aY 477r 

[I -exp{hv(x-r)}]-- [In(r-x)] +- [exp{hv(x-r)}- 11. (3.7) 

The velocity field has the following form: 

u1 = v41+ Xle,. 
It remains to determine #l. 

Substitution of (3.8) into (2 .7 )  results in 

a$,/ax = - p l +  ( 2 ~ ) - 1 v 2 $ ~ .  (3.9) 

Because of (2.8), q5, must also satisfy 

V2$1 = -sin (a) axl/ax - cos (a )  axl/ay. (3.10) 

Tentatively substituting (3.10) into (3.9) one obtains the following simple 
equation: 

q5 =Jim( - p l - ( 2 h ) - l  sina-+coscc- axl)) ax. (3.11) ( 2 ay 

The complete solution will have been obtained if it can be shown that q51 as 
defined by (3.11) also satisfies (3.10). This is easily seen to be the case by applying 
theLaplaceoperatorto (3.11)andtaking (3.5) and(3.3)intoaccount. Thesolution 
of (3.11) is 

y cos a 
[a(r-z)-lexp{h(x- r ) } -  (r-x)-1exp{Aa(x-r)) 

= 47T(v- 1) 

- (g- 1) ( r  - x)-l+ hvE,{ha(r - x)} - haE,{h(r-x)}] 
sin a 

[El{ha(r- z)} - aEl{h(r -x)}+ (1 -a) In ( r  - x)] (3 .12~)  
+477(v- 1) 

when v + 1 and 

IJ cos a sin a 
[exp {h(x - r ) }  - 11 - - [El{h(r - x)} + In (r - x) + exp {h(x - r ) } ]  

$1 = 4- 4n 
(3.12b) 

whenv = 1. 
For the special case v = 1, a = 0 the limit of this solution as the Reynolds 

number goes to  infinity has been obtained by Csanady (1965). 
Because the potential of a horseshoe vortex is y / (r  - x), one may expect the 

flow pattern to resemble a horseshoe-vortex flow pattern. Behaviour of horse- 
shoe-vortex type of hot smokestack plumes can be observed visually under 
favourable circumstances, and is well documented. 

Figures 1 and 2 give an impression of the flow pattern viewed in the direction 
of the x axis. By v, w curves we mean curves that are everywhere tangential to  
the vector (0, v, w). For x > 0 the figures clearly reveal the horseshoe-vortex 
behaviour of the flow. For a = 0 and x > 0 the v, w curves are apparently closed, 
for a + 0 apparently not. For x > 0 and small the determination of those por- 
tions of the v, w curves that almost coincide with the y axis is numerically an 
ill-posed problem; therefore these portions have not been drawn. Because the 
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FIGURE 1. Three-dimensional plume in horizontal unperturbed flow: v, w curves with 

€ = 0.1, A = 10, V = 1. (a) x = 10, (b )  = 0.05, ( G )  x = -0.2. 

(4 
4 -  

3- 

2 -  

1- 

0 

- I  -. 

Y 

3 -  

v 2 -  

1- 

0 

i 

1 

0. 

Y -1 ~ 

FIGURE 2. Three-dimensional plume in inclined unperturbed flow: v, w curves with a = 45", 
€ = 0.1, n = 10, 0- = 1. (a) 1: = 10, ( b )  x = 1, (c) x = 0.2, ( d )  x = -0.2. 

value of g is found not to have much influence on the shape ofthe v, w curves, only 
one value of CT is represented. Figure 3 shows streamlines in the plane of sym- 
metry when a: = 0. As (r increases the heat remains more concentrated, which 
results in a steeper rise of the streamlines that pass close to the source. 
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FIGURE 3. Streamlines in pIane of symmetry for a three-dimensional plume 
with a = 0, E = 0.1, h = 10. (a )  v = 3, ( 6 )  c = 1. 

4. The two-dimensional line-source solution of the Oseen-Boussinesq 
equations 

The line-source solution for B0 is 

8, = (A(T/;TT) exp ( A m )  K,(hvr), (4.1) 

where Y = (z2+y2)* and KO is a modified Bessel function of the second kind, as 
defined by Watson (1958, p. 78). 

The pressure satisfies (3.5), and a particular solution p, can be found from 
(3.6). Hence 

with s = (g2 + y2)6. Althoughp,, satisfies the boundary condition (2.3), it does not 
represent the complete solution for p,, because for 01 + in- plp is discontinuous 
across y = 0 when x > 0 (for x < 0 the integrand in (4.2) is bounded, so that p,, 
is continuous). This may be seen as follows. Let A and S be small positive numbers 
and assume that x > 0. One may write 

(4.3) 
As A 10 with 6 fixed, the integrand in the first two integrals is bounded, so 
that their contribution goes to zero as AJ.0 .  By choosing 6 sufficiently small 
the third integral can be arbitrarily closely approximated by 

8 

- 8  
1 (Aa;s2)-ld< = (2/AgA)arctan (8/A), (4.4) 

where the asymptotic property 

has been used. Hence 
K,(z) z 1 / z  for IzI < 1 (4.5) 
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Thus p ,  has a jump ( - cos a) across the + x axis. The solution for p ,  equals plp 
plus a harmonic function p)lh which vanishes a t  infinity, except perhaps down- 
stream of the source (i.e. in the neighbourhood of the x axis), and has a jump 
( + cos a) across the + x axis. It will be shown that such a harmonic function does 
not exist. A harmonic function which has a jump equal to cos a across the +x 

(4.7) 
axis is 

The function plP +plh is continuous everywhere except a t  the origin, but it does 
not vanish at infinity, except for a = in. This deficiency may only be removed 
by the addition of a harmonic function which is singular only a t  the origin, and 
does not have a branch point. Such a function is the real or imaginary part of a 
complex function that can be represented by a Laurent series 

plh  = [+ + 7r-1 arctan (x/y)] cosa. 

m 

f(z) = 2 a,zn. (4.8) 
n = - w  

The only term of this series that is finite a t  infinity is the constant term a,, which 
cannot be made equal and opposite to plh a t  infinity. 

This proves that in two dimensions in an unbounded region a line-source 
solution of the Oseen-Boussinesq equations which vanishes a t  infinity does not 
exist, except possibly for the case a = 87r. It was shown in the preceding section 
that in three dimensions such a solution does exist. The situation is analogous to 
the Stokes paradox. This ‘paradox’ refers to the fact that the Stokes equations 
for low Reynoldsnumber flow around a sphere have a solution, whereas a solution 
for the two-dimensional flow around a cylinder which leaves the flow a t  infinity 
unperturbed does not exist (see for example Van Dyke (1964, p. 152).) I n  the 
present situation the paradox is ‘weaker ’ than the original Stokes paradox 
because there the velocity becomes infinite a t  infinity, whereas here it remains 
finite outside the wake, as is shown below. 

As in three dimensions, the velocity field is of the form (3.8). The solution of 
the two-dimensional version of (3.3) in the case v = 1 is 

x 1  = (W r exp (W Kl(4) ,  (4.9) 
with r2 = x2 + y2. Hence the rotational part of the velocity vanishes at  infinity 
outside the wake for v = I,  and presumably also for r~ .t. 1. From (3.11) it 
follows that the potential part of the velocity is non-zero and finite a t  infinity. 

It remains to be seen whether the Stokes-type paradox exhibited above is 
caused by the Oseen linearization or whether it is a property of the full Boussinesq 
equations. 
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